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Abstract: Clustering, a fundamental technique in machine learning, plays a pivotal role in partitioning datasets into 

homogeneous groups. Traditional clustering algorithms, while widely adopted, face challenges in handling uncertainty and 

imprecision in real-world data. This research introduces the Rough Set C-Means (RSCM) algorithm, an innovative approach 

that integrates rough set theory into traditional k-means clustering. The RSCM algorithm capitalizes on the principles of rough 

set theory to effectively manage imprecise information during the clustering process. In this study, we present a comprehensive 

examination of the RSCM algorithm, exploring its theoretical foundations, methodology, and practical applications. Through 

a series of experiments conducted on diverse datasets, this paper demonstrates the superior performance of RSCM compared 

to conventional clustering algorithms. The results reveal that the RSCM algorithm not only enhances clustering accuracy but 

also exhibits robustness in handling uncertainties within the data. Furthermore, this work discusses the algorithm's adaptability 

to various domains, emphasizing its potential applications in real-world scenarios. The RSCM algorithm proves particularly 

effective in scenarios where traditional algorithms falter due to data vagueness or uncertainty. The findings of this study 

contribute to the evolving landscape of clustering algorithms, offering a novel perspective on improving performance in the 

presence of imprecise data. 
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1. Introduction 

 

Clustering, an indispensable component of machine learning, serves as a fundamental technique for grouping data points into 

coherent and homogeneous sets. The exploration of clustering algorithms is crucial for uncovering patterns, relationships, and 

structures within complex datasets [31]. However, traditional clustering algorithms encounter limitations when faced with the 

inherent uncertainty and imprecision prevalent in real-world data. In the ever-expanding landscape of data-driven decision-

making, clustering stands as a pivotal technique that aids in uncovering hidden patterns, relationships, and structures within 

vast and complex datasets [32]. As the volume and diversity of data continue to surge, the need for robust and efficient clustering 

methods becomes increasingly apparent. One notable player in this realm is the theory of rough sets, a mathematical framework 

that has proven to be a valuable asset in handling uncertainty and imprecision inherent in real-world data [33].  
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Originating from the pioneering work of Professor Zdzisław Pawlak in the early 1980s, rough set theory has evolved into a 

versatile tool with applications spanning various domains, including data analysis, machine learning, and knowledge discovery. 

Its unique ability to capture and model uncertainty without imposing strict assumptions has rendered it particularly suitable for 

addressing the challenges posed by noisy, incomplete, or ambiguous data characteristics often encountered in practical 

scenarios [34]. This article delves into the intricate relationship between rough set theory and clustering, shedding light on how 

this powerful combination contributes to the enhancement of clustering algorithms [35]. By dissecting the fundamental concepts 

of rough sets and their seamless integration into clustering methodologies, this paper aims to provide a comprehensive 

understanding of how rough sets play a pivotal role in unraveling hidden structures within diverse datasets [36]. As we embark 

on this exploration, this work will navigate through the theoretical foundations of rough sets, highlighting their strengths in 

handling granular information and discerning discernible patterns within data [37]. Subsequently, it delves into the fusion of 

rough set theory with clustering algorithms, showcasing how it fortifies the clustering process by addressing uncertainties and 

vagueness [38].  

 

Through real-world examples and case studies, illustrate the tangible impact of incorporating rough sets into clustering 

methodologies, ultimately demonstrating their efficacy in enhancing the accuracy and reliability of clustering results [39]. This 

research addresses the challenges posed by traditional clustering approaches and presents a novel solution in the form of the 

Rough Set C-Means (RSCM) algorithm [40]. Developed at the intersection of rough set theory and the conventional k-means 

clustering algorithm, RSCM offers a distinctive approach to handling imprecise information effectively. The integration of 

rough set theory allows the algorithm to navigate the intricacies of uncertain data, providing a robust solution for enhanced 

clustering performance [41]. This study embarks on a comprehensive exploration of the RSCM algorithm, delving into its 

theoretical foundations, methodology, and practical applications [42]. By conducting a series of experiments across diverse 

datasets, substantiate the efficacy of RSCM in comparison to traditional clustering algorithms. The findings not only underscore 

the algorithm's capability to improve clustering accuracy but also highlight its robustness in addressing uncertainties embedded 

within the data [43]. 

 

The C-Means algorithm, also known as the Fuzzy C-Means (FCM) algorithm, is a well-established clustering algorithm that 

assigns data points to clusters based on their similarity to cluster centres [44]. It falls under the category of fuzzy clustering 

algorithms, where each data point can belong to multiple clusters with varying degrees of membership. Rough set theory, on 

the other hand, is a mathematical framework for dealing with uncertainty and vagueness in data [45]. It primarily focuses on 

the concept of approximations and the discernibility of objects within a set. Suppose there have been new developments or 

research combining rough set theory with the C-Means clustering algorithm [46]. The Rough C-Means (RCM) clustering 

algorithm and the Fuzzy C-Means (FCM) algorithm are both techniques used for clustering data points, but they operate on 

different principles [47]. Here are some potential advantages of Rough C-means clustering over Fuzzy C-means: 

1.1. Handling Uncertainty and Imprecision 

 

• Rough C-Means is particularly well-suited for scenarios where data may contain uncertainty and imprecision. The 

rough set theory, on which RCM is based, allows for the modeling of uncertainty in a more granular manner than fuzzy 

logic. 

• FCM assigns degrees of membership to each data point, reflecting the likelihood of belonging to each cluster. While 

this captures some level of uncertainty, rough sets offer a more detailed approach to handling ambiguity and indistinct 

boundaries in the data. 

1.2. Granular Information Representation 

• Rough set theory focuses on representing granular information by discerning between essential and non-essential 

features. This granular approach can provide a more nuanced representation of the underlying structure in the data, 

potentially leading to more meaningful clusters. 

1.3. Interpretability 

• The clusters generated by Rough C-Means may be more interpretable due to the explicit handling of rough sets. Rough 

sets often provide a clearer understanding of the discernibility between objects in a dataset, aiding in the interpretation 

of the clustering results. 

1.4. Reduction of Dimensionality 

• Rough set theory often involves the reduction of dimensionality by identifying and eliminating irrelevant or redundant 

features. This reduction can enhance the efficiency and interpretability of the clustering process. 
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One notable feature of RSCM is its versatility and adaptability to various domains, making it a promising tool for real-world 

applications [48]. This work emphasizes its efficacy in scenarios where traditional algorithms encounter challenges arising 

from data vagueness or uncertainty [49]. This adaptability positions RSCM as a valuable asset for researchers and practitioners 

seeking advanced clustering solutions [50]. 

As the research unfolds, this paper not only showcases the strengths of the RSCM algorithm but also acknowledges encountered 

challenges during experimentation [51]. Through a forward-looking lens, this work proposes future directions for refining and 

advancing the RSCM algorithm [52]. The insights derived from this study contribute to the evolving landscape of clustering 

algorithms, offering a novel perspective on enhancing performance in the presence of imprecise data [53]. In subsequent 

sections, this paper delves into the theoretical foundations, methodology, experimental results, and potential applications of the 

Rough Set C-Means algorithm, providing a comprehensive overview of its contributions to the field of machine learning [54]. 

2. Literature Review 

 

The original paper by Zdzisław Pawlak introduced rough set theory. It's essential to understand the initial concepts and 

motivations behind the development of rough set theory [11,13]. Also, Pawlewski provided a comprehensive introduction to 

the mathematical foundations of rough set theory. He covered basic concepts, formal definitions, and the mathematical structure 

of rough sets [12]. The paper delves into the mathematical properties of rough sets and explores their diverse applications in 

feature selection, as detailed in references [14-19]. Bansal et al., [29] introduced a new kind of rough set called an MF-rough 

set (Membership function rough set). MF-rough sets are defined using rough membership functions, and they have some 

interesting properties that are not shared by classical rough sets. This work also developed a logic for MF-rough sets. This logic 

is based on the idea that the truth value of a proposition can be any number between 0 and 1 and demonstrates that this logic 

can be used to reason about MF-rough sets in a natural way.   

Bhardwaj et al., [28] used rough membership functions to characterize decisions when data is incomplete. Pawlak's rough 

membership functions are limited in this regard, so they introduced four types of covering-based rough sets to address this. 

These are used to create new rough membership functions that are more applicable. Praveen Kumar Sharma [30] discussed 

three new types of rough membership functions and their properties, along with the relationship between a covering and its 

derived fuzzy β-covering using rough membership functions. Additionally, they explored the relationships among the four 

types of rough membership functions and proposed a novel type of graded covering-based rough set model on the basis of 

rough membership function.  

The extended iteration of the rough hybridization technique, incorporating graph theory and exploring the properties of rough 

graphs, is thoroughly examined in [20-24], with a particular focus on its manifold applications, notably in wireless sensor 

networks. Clustering algorithms are essential tools in machine learning for uncovering patterns and structures within datasets. 

Traditional approaches, such as k-means and hierarchical clustering, have been widely employed to group similar data points. 

However, these methods face challenges when confronted with the inherent uncertainty and imprecision often present in real-

world datasets [1].  

Traditional clustering algorithms are sensitive to outliers, noise, and variations in data distribution. In scenarios with vague or 

uncertain information, these methods may yield suboptimal results. This limitation motivates the exploration of innovative 

approaches that can enhance clustering performance in the presence of imprecise data [2]. Rough set theory, introduced by 

Pawlak, offers a mathematical framework for handling uncertainty and vagueness in data. The application of rough set theory 

to clustering algorithms provides a promising avenue for improving robustness in the face of imprecision. By capturing the 

inherent uncertainty in data, rough set-based approaches can contribute to more accurate and reliable clustering outcomes [3]. 

The Rough Set C-Means (RSCM) algorithm represents a notable integration of rough set theory into the traditional k-means 

clustering algorithm. This novel approach leverages the principles of rough set theory to manage imprecise information during 

the clustering process effectively.  

The various characteristics of Rough C-Means clustering are exhibited in [26]. The synergy between rough set theory and k-

means clustering offers a unique solution to the challenges posed by uncertainty in real-world datasets [4]. Research studies 

have demonstrated the practical utility of the RSCM algorithm in various domains. Its adaptability to scenarios with data 

vagueness or uncertainty positions it as a valuable tool in fields such as bioinformatics, finance, and image processing [5,6]. 

Empirical studies conducted on diverse datasets substantiate the superior performance of the RSCM algorithm compared to 

traditional clustering methods. The algorithm not only enhances clustering accuracy but also exhibits robustness in handling 

uncertainties within the data [7,8].  

As with any novel algorithm, challenges emerge during experimentation. Identifying and addressing these challenges is crucial 

for refining the RSCM algorithm. Ongoing research aims to explore future directions for further improving the algorithm's 

efficiency, scalability, and applicability across diverse domains [9]. The findings of this research contribute to the evolving 
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landscape of clustering algorithms. By offering a novel perspective on improving performance in the presence of imprecise 

data, the RSCM algorithm opens avenues for advancements in the field of machine learning [10].  

3. Preliminaries 

 

3.1. Rough Set Theory 

Pawlak introduced the Rough Set Theory [11–13] in 1982, gaining significant recognition for its capacity to address vagueness, 

inconsistency, uncertainty, and incompleteness within datasets. By exploring rough approximations within roughly granulated 

spaces, this methodology has become a valuable tool in data analysis [55].  

Extending this framework, Yao et al. introduced generalized rough set models [25], extending the definition of lower and upper 

approximations beyond equivalence relations to encompass any binary relations. 

Definition 3.1: Let ℜ be an equivalence relation defined on the universe of discourse 𝔘. If [𝑎]ℜ where 𝑎 ∈ 𝔘  is the equivalence 

class then the following set approximations of 𝕏 ⊂ 𝔘  are defined as follows: 

 

𝑆𝑒𝑡 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝕏 = {
 𝕏(ℜ) =  {𝑎 ∈ 𝔘: [𝑎]ℜ ⊆ 𝕏 }            𝐿𝑜𝑤𝑒𝑟  𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

𝕏 (ℜ) = {𝑎 ∈ 𝔘: [𝑎]ℜ ∩ 𝕏 ≠ ∅ }  𝑈𝑝𝑝𝑒𝑟  𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛
                     (1) 

 

        (a) If 𝕏(ℜ) ≠ ∅, 𝕏 (ℜ) ≠ 𝔘 ⇒ 𝕏  is ℜ definable. 

         (b) If 𝕏(ℜ) =  ∅, 𝕏 (ℜ) ≠ 𝔘 ⇒ 𝕏  is internally ℜ undefinable 

         (c)  If 𝕏(ℜ) ≠ ∅, 𝕏 (ℜ) = 𝔘 ⇒ 𝕏  is externally ℜ undefinable 

         (d) If 𝕏(ℜ) = ∅, 𝕏 (ℜ) = 𝔘 ⇒ 𝕏  is totally ℜ undefinable 

The concept of definability has been extended as following quasi order through tolerance relation. Here ℜ can be represented 

through tolerance relation, which is also known as ℜ substantiated (lower) and weakened (upper) set of 𝕏  ⊂ 𝔘 is expressed 

as follows: 

 

            𝕏(ℜ) = {𝑎 ∈ 𝔘,ℜ−1(𝑎) ⊆ 𝕏  𝑤ℎ𝑒𝑟𝑒 ℜ−1(𝑎, 𝑏) 𝑖𝑠 𝑏ℜ𝑎  } 

                      𝕏 (ℜ) = {𝑎 ∈ 𝔘,ℜ−1(𝑎) ∩ 𝕏 ≠ ∅  𝑤ℎ𝑒𝑟𝑒 ℜ−1(𝑎, 𝑏) 𝑖𝑠 𝑏ℜ𝑎  } 

A rough set is defined as 𝕏 if and only if it generates a non-empty boundary region, which corresponds to the disparity between 

the upper and lower approximations. The measure of accuracy is defined as: 

 

                                           𝐴𝐶𝐶ℜ(𝕏) =
|𝕏(ℜ)|

| 𝕏 (ℜ)|
                                                            (2) 

Definition 3.2: Rough Membership Function: 

The rough membership function is a way to quantify the degree to which an element belongs to a set, given incomplete or 

imprecise information, and it was introduced [27]. It's different from fuzzy set membership, which is based on subjective 

degrees of truth. It is defined by: 

 

       𝜇𝕏
ℜ(𝑎) =

|[𝑎]ℜ ∩𝕏|

|[𝑎]ℜ|
=

{
 

 
0                  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛 (𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓  𝑡ℎ𝑒 𝑠𝑢𝑏 𝑠𝑒𝑡)
1                               𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛 (𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡)

0 < 𝜇𝕏
ℜ(𝑎) < 1                                   𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑅𝑒𝑔𝑖𝑜𝑛 ( 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝,

                             𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒).

    (3) 
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  The diagrammatic form of the Rough Membership function is defined as (Figure 1): 

 

          

 

 

 

 

 

 

Figure 1: Rough Membership Function 

 

 Properties of Rough Membership function 

(i) 𝜇𝕏∪𝕐
ℜ (𝑎) ≥ 𝑀𝑎𝑥 (𝜇𝕏

ℜ(𝑎), 𝜇𝕐
ℜ(𝑎)) , ∀𝑎 ∈ 𝔘   

(ii) 𝜇𝕏∩𝕐
ℜ (𝑎) ≤ 𝑀𝑖𝑛 (𝜇𝕏

ℜ(𝑎), 𝜇𝕐
ℜ(𝑎)) , ∀𝑎 ∈ 𝔘  

(iii) 0 < 𝜇𝕏
ℜ(𝑎) < 1  𝑖𝑓𝑓 𝑎 ∈ 𝕏 (ℜ) − 𝕏(ℜ). 

(iv) 𝑀𝑎𝑥[0, 𝜇𝕏
ℜ(𝑎) + 𝜇𝕐

ℜ(𝑎) − 1]  ≤ 𝜇𝕏∩𝕐
ℜ (𝑎) ≤ 𝑀𝑖𝑛 (𝜇𝕏

ℜ(𝑎), 𝜇𝕐
ℜ(𝑎)) 

(v) 𝑀𝑎𝑥[𝜇𝕏
ℜ(𝑎), 𝜇𝕐

ℜ(𝑎)] ≤  𝜇𝕏∪𝕐
ℜ (𝑎)  ≤ 𝑀𝑖𝑛(𝜇𝕏

ℜ(𝑎) + 𝜇𝕐
ℜ(𝑎), 1) 

(vi)  𝜇𝕏∪𝕐
ℜ (𝑎) = 𝜇𝕏

ℜ(𝑎) + 𝜇𝕐
ℜ(𝑎) − 𝜇𝕏∩𝕐

ℜ (𝑎) 
 

4. Methodology 

 

The RSCM algorithm incorporates a rough set theory to handle uncertainty. Mathematical formulations involve defining lower 

and upper approximations for clusters, ensuring a robust representation of imprecise data. Define the objective function for 

RSCM, combining rough set principles with the 𝑘 − 𝑚𝑒𝑎𝑛𝑠 objective. This paper introduces a fuzziness-weighting exponent 

to handle more uncertainty and impreciseness. It is a parameter that controls the degree of fuzziness in the clustering process 

[56]-[61].  

The fuzziness weighting exponent, denoted by the symbol m, is a positive constant that determines how much the memberships 

are weighted. The higher the m, the fuzzier the clustering results [62]. The goal is to minimize intra-cluster variance while 

considering uncertainty encapsulated by rough set theory [63]. The fuzziness weighting exponent m in Rough C-Means satisfies 

the following conditions: 

• m>1: The larger the m, the fuzzier the clustering. It indicates a greater tolerance for overlapping clusters and allows 

data points to have memberships across multiple clusters [64]. 

• m→∞: As m approaches infinity, the memberships tend to become more binary, resembling a crisp/hard clustering 

where each data point belongs to only one cluster [65]. 

Algorithm Steps: 

• Initialization: Initialize cluster centers using standard k-means initialization. 

• Membership Assignment: Employ rough set-based membership functions to assign data points to clusters. 

                                    𝜇𝑖𝑗 =
1

1+ 
𝑑𝑖𝑗
2

𝑑𝑖𝑘
2

    

 Here  𝜇𝑖𝑗 represents the membership of data point 𝑖  to cluster 𝑗,  and  𝑑𝑖𝑗  is the distance from data point 𝑖 to cluster centre 𝑗.   

From this membership assignment, the following objective function has to be fixed.  

𝐽 = ∑ ∑𝜇𝑖𝑗
𝑚. ‖𝑥𝑖 − 𝑐𝑗‖

2
𝐾

𝑗=1

𝑁

𝑖=1
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Where 𝑁 is the number of  data points, 𝐾 is the number of clusters, 𝜇𝑖𝑗 is the membership, 𝑚 is the fuzziness weighting 

exponent, 𝑥𝑖 is the data point, and 𝑐𝑗 is the centroid of cluster 𝑗. 

• Centroid Update: Update cluster centroids based on the assigned memberships. If 𝐶𝑖 is the centroid of 𝑖th cluster, 𝑥𝑗 is 

𝑗th data point,  𝜇𝑖𝑗 is the membership degree of 𝑥𝑗 in cluster 𝑖, 𝑚 – type 2 fuzziness parameter, then updation of the 

centroid is calculated by the following equation 

                        𝐶𝑖 =
∑ 𝜇𝑖𝑗

𝑚 𝑥𝑗
𝑁
𝑗=1

∑ 𝜇𝑖𝑗
𝑚 𝑁

𝑗=1

+  𝛼 
∑ (𝜇𝑖𝑘−𝜇𝑗𝑘)

2
 𝑥𝑗

𝑁
𝑘=1

∑ (𝜇𝑖𝑘−𝜇𝑗𝑘)
2
 𝑁

𝑘=1

 

• Convergence Criteria: Iterate until convergence, considering changes in centroids and memberships as  

|𝐽(𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) − 𝐽(𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)| <
                                                                                       𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)         

5. Results and Discussion 

 

For implementing this proposed algorithm, a Cardio Vascular Disease data set is being considered. This data set consists various 

features describing individuals' health and lifestyle factors as age, gender, height, weight, Systolic Blood Pressure (ap_hi)- The 

systolic blood pressure, which is the higher of the two blood pressure values measured during a heartbeat, Diastolic Blood 

Pressure (ap_lo)-which is the lower of the two blood pressure values measured between heartbeats [66], Cholesterol- 

categorized as 1 for normal, 2 for above normal, and 3 for well above normal (Tables 1 and 2), Glucose- categorized as 1 for 

normal, 2 for above normal, and 3 for well above normal [67], Smoking- binary-1 for yes, 0 for no, Alcohol Intake-binary, 

Physical Activity-binary, Presence or Absence of Cardiovascular Disease-target feature [68]-[72]. Descriptive statistics of the 

above features are explained as follows (Figure 2): 
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Figure 2: Descriptive statistics 

 

Table 1: Statistical Analysis 

 

Disease 

 Frequency Percent Valid Percent Cumulative Percent 

Valid 0 35021 50.0 50.0 50.0 

1 34979 50.0 50.0 100.0 

Total 70000 100.0 100.0  
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Figure 3: Cluster Analysis Report 

 

Correctly Classified Instances         231               76.2376 % 

Incorrectly Classified Instances        72               23.7624 % 

Kappa statistic                                0.5187 

Mean absolute error                       0.1631 

Root mean squared error               0.2652 

Relative absolute error                 81.2932 % 

Root relative squared error             84.1721 % 

Total Number of Instances              303      

Number of clusters selected by cross validation: 3 

Number of iterations performed: 14 

Table 2: Measures of Clusters 

 

      Attribute 

Cluster 

0 

(0.29) 

1 

(0.42) 

2 

(0.29) 

Age 

Mean 55.8025 57.2681 48.7593 

Std. dev. 9.4009 7.607 8.0803 

Gender 

Female 43.3865 22.1109 33.5026 

Male 47.445 106.0262 56.5288 

Total 90.8315 128.1371 90.0314 

Cp    

Typ_angina 16.355 6.6095 3.0355 

Asympt 16.5603 102.3877 27.0519 

Non-anginal 40.6734 17.5095 31.8171 

Atyp_angina 19.2427 3.6303 30.127 

Total 92.8315 130.1371 92.0314 

Height 

Mean 134.1791 134.4497 124.996 
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Std. dev. 18.8379 18.7865 11.3777 

chol 

Mean 249.368 249.4666 238.543 

Std.Dev 61.4828 49.0345 43.2707 

Weight 

t 19.0981 22.2939 6.6079 

f 71.7334 105.8432 83.4235 

Total 90.8315 128.1371 90.0314 

ap_hi | int 

Left_vent_hyper 41.6334 71.26 37.1066 

Normal 48.2024 53.8728 52.9246 

St_t_wave_abnormaliyt 1.9957 4.0043 1 

Total 91.8315 129.1371 17.3582 

| ap_lo | int 

Mean 156.4954 135.3674 163.1966 

Std.Dev 18.1175 21.2039 17.3582 

Glucose 

No 78.9355 49.0598 79.0047 

yes 11.896 79.0772 11.0267 

Total 90.8315 128.1371 90.0314 

 Old  peak   

Mean 0.8647 1.7997 0.127 

Std.Dev 0.7679 1.2638 0.2239 

Smoking 

Up 53.9875 23.7816 67.2309 

Flat 29.765 91.8908 21.3443 

Down 8.079 13.4647 2.4562 

Total 91.0315 129.1371 91.0314 

Alcohol intake 

Mean 0.5591 1.2265 0 

Sts.Dev 0.7136 1.0404 0 

Physical activity 

Fixed_defect 2.2741 14.7933 3.9326 

Normal 72.9806 27.679 70.3404 

Reversible_defect 16.5768 86.6649 16.7584 

Total 91.8315 129.1371 91.0314 

clusters 

<50 77.1955 9.8041 81.0004 

>50_1 13.636 118.333 9.031 

>50_2 1 1 1 

>50_3 1 1 1 

>50_4 1 1 1 

Total 93.8315 131.1371 93.0314 

Clustered Instances  

0 65(21%)   

1 118(29%)   

2 120(40%)   

 

Table 3: Detailed Accuracy by Class  

 
TP 

Rate           

FP 

Rate           
Precision Recall 

F-

Measure   

     

MCC       

ROC 

Area   

PRC 

Area   

Class 

 

 0.806 0.290 0.769 0.806 0.787 0.519 0.829 0.832 <50 

 0.710 0.194 0.754 0.710 0.731 0.519 0.828 0.827 >50_1 

 … …. … … … … … … >50_2 

 … … … … … … … … >50_3 
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 … … … … … … … … >50_4 

Weighted 

Avg.     
0.762 0.246 0.762 0.762 0.762 0.519 0.829 0.830  

 

Table 4: Confusion Matrix 

a b c d e <-- classified as 

133 32 0 0 0 a=<50 

40 98 0 0 0 b=>50_1 

0 0 0 0 0 b=>50_2 

0 0 0 0 0 b=>50_3 

0 0 0 0 0 b=>50_4 

               

Log-likelihood: -21.51602 (Tables 3 and 4) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Diagrammatic representation of optimal features 

The process begins with zero attributes and iteratively adds one attribute at a time in the forward search direction using 303 

instances, resulting in 5 node expansions [73]-[77]. A total of 71 subsets have been evaluated during this process. The optimal 

features selected are Exang, ca, and thal, with a merit score of 96.838 (Figures 3 and 4). 

6. Conclusion 

In conclusion, this research investigates the integration of the Rough Set C-Means (RSCM) algorithm, a novel clustering 

approach that merges rough set theory with the traditional k-means algorithm. Clustering, a fundamental aspect of machine 

learning, is pivotal for grouping data into coherent sets, but conventional methods face challenges with uncertainties in real-

world data. RSCM addresses these challenges by leveraging rough set theory to manage imprecise information during 

clustering. The study comprehensively explores the theoretical foundations, methodology, and practical applications of the 

RSCM algorithm. Through experiments on diverse datasets, RSCM demonstrates superior performance compared to traditional 

clustering algorithms, enhancing accuracy and robustness, particularly in scenarios with vague or uncertain data. The 

adaptability of RSCM across various domains positions it as a valuable tool for real-world applications. The RSCM algorithm 

excels where traditional methods falter due to data vagueness or uncertainty. The research not only highlights the algorithm's 

strengths but also acknowledges challenges encountered during experimentation. Future directions for refining and advancing 

the RSCM algorithm are proposed, contributing valuable insights to the evolving landscape of clustering algorithms. The study's 

findings provide a unique perspective on improving clustering performance in the presence of imprecise data, offering a novel 

approach to the machine-learning community. The integration of rough set theory with clustering algorithms, as demonstrated 

by RSCM, opens avenues for more accurate and reliable clustering outcomes in complex and uncertain real-world datasets. 
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